REVIEW

DNA adducts in marine and freshwater fish as biomarkers of environmental contamination

Wolfgang Pfau

The analysis of DNA modifications in aquatic animals may serve as a sensitive marker of exposure to genotoxic contaminants. This is of importance in assessing water quality regarding pollution with genotoxic compounds, food safety analysing edible aquatic animals and in terms of ecotoxicology. Covalent modification of DNA is considered a crucial event in chemical carcinogenesis and thus may be considered a biomarker of an early genotoxic effect. Measuring DNA adducts is unique in that these lesions may be considered a biomarker of both exposure and effect. A number of studies have described the analysis of the DNA isolated from the liver of both freshwater and marine fish. Considerable levels of DNA adducts have been observed in some animals from contaminated lakes or rivers. Low levels were observed in DNA from the liver of marine fish. The background levels of DNA adducts have to be determined in animals from appropriate uncontaminated control sites that are matched for species, gender, age and season of the year, it is of crucial importance to consider the species analysed since there have been reports of the non-responsiveness of some species.

Keywords: DNA adducts, ³²P-postlabelling, fish, environmental toxicology.

Introduction

The occurrence of tumorigenic lesions in fish has been employed as a biomarker for the assessment of water pollution (Mix 1986, Malins et al. 1988). However, this biological endpoint has proved to be a rather crude parameter, detecting only very heavy contamination of the environment with carcinogenic pollutants (deRaat et al. 1990). Furthermore, the detection of neoplastic diseases in fish is a late biomarker of effect which provides no information on the contaminants that led to this biological response.

DNA adducts

Covalent modifications of cellular DNA (DNA adducts) are generally regarded as initiating lesions in chemically-induced neoplasms (Kriek *et al.* 1984). Quantitative relationships have been established between dose, DNA adduct level and biological endpoints in a number of mutagenesis tests,

Wolfgang Pfau is in the Department of Toxicology and Environmental Medicine, Fraunhofer Society, Grindelallee 117, 20146 Hamburg, Germany.

transformation assays and animal carcinogenicity tests in vitro and in vivo in rodents (Autrup 1991). The determination of DNA adducts in experimental animals and humans exposed to genotoxic compounds is a useful tool in cancer research. A number of experimental studies with laboratory fish (see below) have led to the assumption that these results can be transferred from mammalian species to teleosts: most of the chemicals classified as carcinogens require metabolic activation in order to exert their biological effect. This activation is mediated by cytochrome P450 oxidases or prostaglandin synthetases (phase I) and may require further activation by conjugating enzymes (phase II). The active metabolites are electrophilic, and will react with cellular DNA to form covalent adducts. Guanine is generally the major target for the binding of alkylating or bulky polycyclic aromatic agents to DNA. It has been demonstrated that fish have the enzymatic capability to perform these metabolic transformations (reviewed by Stegeman 1993). The induction of hepatic enzymes as a result of environmental pollution or experimental dosing with PAH, polychlorinated biphenyls or dioxines has been applied as a useful biomarker in freshwater and marine organisms including fish (Goksoyr and Förlin 1992, Collier et al. 1995).

In experimental studies (Varanasi et al. 1986, 1989a, Stein et al. 1993) it has been shown that adducts formed by benzo[a]pyrene in the liver DNA of fish accumulate over time. Therefore DNA adducts appear to be especially suited for the determination of chronic exposure to genotoxic compounds. It has been shown that covalent DNA modifications are persistent for longer periods of time (up to several months), similar to or even longer than DNA adducts in mammalian tissues (Varanasi et al. 1989a). Although several studies have addressed the repair of DNA adducts in fish (Sikka et al. 1990, Kurelec et al. 1991), the recent insights into the mechanisms of DNA repair in mammalian cells have not as yet been investigated in detail (Bohr 1995).

METHODS

The detection and quantitation of DNA adducts present a challenging analytical problem. Since these lesions are formed at very low levels the sensitivity of an assay must be very high. Several new methods have been developed to detect carcinogen-DNA adducts in mammalian (including human) tissues and blood cells (Table 1), including immunochemical, biochemical and physical techniques (Phillips 1989). Experimental studies often make use of radioactively labelled compounds which are applied to the animals (Sikka et al. 1991, Zhang et al. 1992) (Table 2). However in field studies this approach is not feasible. The immunological methods use antibodies raised against specific DNA adducts, thus the chemical structure of the DNA adduct to be analysed has to be known (Nakatsuru et al. 1990, Poirier 1993, Pfohl-Leszkowicz et al. 1996). Typically, antibodies are raised against DNA modified with benzo[a]pyrene diol epoxide. It has been shown that these antibodies cross-react with similar DNA adducts formed by other PAH diol epoxides, data derived from these immunochemical assays are considered to reflect the total of PAH-DNA adducts (Poirier 1993). In order to increase the specificity and sensitivity of the biochemical and the physical methods they have been combined with an immunoaffinity purification step (Autrup 1991).

Method	Sensitivity ^a	Cost	Comments	Reference	
³ H-label/HPLC ¹⁴ C-label/HPLC	10 100	High	Labelled carcinogens required, not suitable for biomonitoring feral fish	Phillips 1989, Varanasi et al. 1986 Sikka et al. 1991	
HPLC/fluorescence	100	Low	Applicable only to fluorescent compounds	Shugart et al. 1987	
GC/MS	10	High	Derivatization required	Talaska et al. 1992, Friesen et al. 1996	
Immunoassay	1	Low	Structure of adduct must be known and antibody available	Poirier 1993	
³² P-Postlabelling	0.1	Low	Preferably bulky, aromatic adducts	Randerath et al. 1981, Phillips 1989	

Table 1. Methods for DNA adduct analysis that have been applied to the study of DNA adduct formation in marine or freshwater fish.

Species		Carcinogen ^a	Method ^b	Result ^c	Reference
English sole Starry flounder	Parophrys vetulus Platichthys stellatus	BaP	³ H-label	Species-dependent adduct levels	Varanasi et al. 1986
English sole	Parophrys vetulus	Sediment extract	PL/Butex	Diagonal zone	Varanasi et al. 1989b
English sole	Parophrys vetulus	BaP	PL	BPDE-dG	Varanasi et al. 1989a
■ Rainbow trout	Oncorhynchus mykiss	AFB	³ H and ELISA	Species-dependent adduct levels	Nakatsuru et al. 1990
Coho salmon	Oncorhynchus kisutch				
Southern flounder	Paralychthys lethostigma	BaP and metabolites	³ H-label		James et al. 1991
Brown bullhead	Ictalurus nebulosus	BaP and metabolites	¹⁴ C-label	BPDE-dG, persistence of adducts	Sikka et al. 1991
Carp	Cyprinus carpio	BaP	PL, Butex	BPDE-dG	Kurelec et al. 1991
ි <u></u> <u>></u> Carp	Cyprinus carpio	Diesel-2 oil slick	PL	Persistence and repair of adducts	Kurelec et al. 1992
≧ English sole	Parophrys vetulus	BaP	³ H-label	BPDE-dG	Nishimoto et al. 1992
型	Parophrys vetulus	BaP, DBC	PL/P1	Cumulative adduct formation, persistence	Stein et al. 1993
୍ରି କ୍ଲିRainbow trout	Oncorhynchus mykiss	AFB	³ H-label	Temperature dependent adduct levels	Zhang et al. 1992
Rainbow trout	Oncorhynchus mykiss	BaP	PL	Adduct levels dependent on route of administration	Potter et al. 1994
Killifish	Fundulus grandis Fundulus similis	BaP	PL/P1		Willet et al. 1995
Rainbow trout	Oncorhynchus mykiss	Effluent discharges	PL/Butex	DNA adducts in gill and liver	Sagelsdorff 1995

Table 2. Experimental studies on DNA adduct formation in aquarium fish.

^a Fish were treated with carcinogenic compounds (BaP: benzo[a]pyrene, AFB: aflatoxin B1, DBC: dibenzocarbazole) or complex mixtures.

(aguarium control)

- ^b Methods employed for DNA adduct analysis were PL: ³²P-postlabelling with enhancement procedures butanol extraction (Butex, Gupta 1985) or nuclease P1 enhancement (P1, Reddy and Randerath 1986); or ³H or ¹⁴C-labelled compounds were administered and radioactivity bound to hepatic DNA was determined.
- ^c Specific results of the study, i.e. identification of the major DNA adduct formed by BaP, the adduct that is formed by direct reaction of *r*-7,*t*-8-dihydroxy-*t*-9,10-oxy-7,8,9,10-tetrahydrobenzo[*a*]pyrene with deoxyguanosine (BPDE-dG) or dependance of adduct formation on species, water temperature, route of administration or organ examined.

The fluorescence-based techniques rely heavily on the intrinsic fluorescence properties of the carcinogen. Thus, synchronous fluorescence scanning or HPLC analysis with fluorescence detection have been restricted to the analysis of benzo[a]pyrene or aflatoxin-derived adducts (Shugart *et al.* 1987, Phillips 1989, Wang and O'Laughlin 1992). Analysis of DNA adducts by GC/MS techniques has the advantages of a relatively high sensitivity with additional structural information on the carcinogen. It has been shown that PAH-modified DNA quantitatively releases the tetrol moieties following acid hydrolysis. Polycyclic aromatic amines bound to DNA are released by mild alkaline hydrolysis (Friesen *et al.* 1996). The necessary derivatization techniques have been developed and GC/MS analysis has been applied in experimental studies with rodents or in human biomonitoring experiments (Talaska *et al.* 1992, Friesen *et al.* 1996). The application of these very recent developments to studies on DNA adducts in fish appears to be very promising.

32P-Postlabelling

The most extensively applied method in the study of DNA adducts is the ³²P-postlabelling assay developed by Randerath and coworkers (Randerath et al. 1981). The advantages of this method are the versatility with regard to adduct structure, the extremely low limit of detection, the applicability to DNA adducts of unknown structure and the relatively low cost of the assay.

DNA adducts of the 'bulky' types formed by carcinogens containing a multi-ring aromatic moiety are most easily detected, but adducts formed by other groups of compounds can be analysed by modifications of the chromatographic conditions (Phillips 1989). Briefly this method consists of DNA isolation from the tissue and enzymatic hydrolysis of DNA to 3'-phospho-nucleotides. These monophosphates are then enzymatically labelled with radioactive [32 P]-phosphate at the 5'-position using polynucleotide kinase and [γ^{-32} P]-ATP. This $\frac{1}{2}$

^a Approximative sensitivity in adducts per 10⁸ nucleotides.

DNA adducts in fish

1/18/12	
Hospital on 1	
ı Christian I	
hanghua	
Ŋ	,
com by C	
informahealthcare.com	
ormahealthcare.com	

Species		Location		Methoda	Adduct levels ^b RAL (10 ⁸)	adduct levels with contamination ^c	
Brown bullhead	Ictalurus nebulosus	Buffalo River Detroit River (aguarium control)d	Great Lake estuaries	P1 HPLC	7.0 5.4 (1.5) ^d	+	Dunn et al. 1987
Chub Barbel Bream Carp	Leuciscus cephalus Barbus barbus Abramis brama Cyprinus carpio	Sava River (Korana River) ^d	New Zagreb, Croatia Karlovac, Croatia	Butex	0.5 1.9 7.5 (0.5) ^d	-	Kurelec et al. 1989a
Brown bullhead	Ictalurus nebulosus	Cuyahoga River Black River Hamilton Harbour Bay of Quinte (Lake Haddie) ^d	Ohio Ohio Lake Ontario Lake Ontario		56.6 42.2 21.7 7.9 (6.6) ^d	+	Dunn et al. 1990
Oyster toadfish	Opsanus tau	Elizabeth River (Chesapeake) ^d	Virginia		4.7–14.1 (0.5) ^d	+	Collier et al. 1993
Bream	Abramis brama	River Elbe (Lake Belau) ^d	Several stations, Germany	Butex	21.9–45.7 (0.5) ^d	+	Pfau et al. 1994
Roach	Rutilus rutilus	Nieuwe Meer Lake (Gasperplan Lake) ^d	Amsterdam	P1	2.9 (2.8) ^d	-	van der Oost <i>et al.</i> 1994a
Eel	Anguilla anguilla	Amerika Harbour	Amsterdam,	P1	34.3	+	van Schooten <i>et al.</i> 1995, van der
		Volgermeerpolder (Diemerzeedijl) ^d	The Netherlands		23.2 (4.7) ^d		Oost et al. 1994b
White sucker	Catostomus commersoni	St Lawrence River (St Francois River) ^d	Montreal Canada Windsor, Canada		12.9 (5.7) ^d	+	El Adlouni et al. 1995

Table 3. Field studies on DNA adducts in various species of freshwater fish from a number of contaminated rivers or lakes. DNA adduct levels are compared with short the same species from local reference sites. Studies were performed on DNA from fish liver employing the ³²P-postlabelling assay with different enrichment procedures.

[a] Variations of the ³²P-postlabelling assay: Butex: butanol extraction (Gupta 1985), P1: nuclease P1 enrichment (Reddy and Randerath 1986), HPLC: fractionation of adducts by reversed-phase HPLC (Dunn et al. 1987).

- ^b RAL = relative adduct labelling of DNA modifications detectable by ³²P-postlabelling expressed as DNA adducts per 10⁸ nucleotides (interval or mean levels from several animals per station).
- ^c A significantly elevated level of DNA adducts was observed (+) or was not observed (–) in the livers of fish from a contaminated environment compared with the reference site.
- ^d Reference sites and DNA adduct background levels observed in animals from these sites in parenthesis.

enrichment of the modified nucleotides, extracting these into n-butanol in the presence of a phase-transfer agent, HPLC fractionation or differential hydrolysis of non-modified nucleotides with nuclease P1 (Gupta 1985, Reddy and Randerath 1986, Dunn et al. 1987). Following the labelling reaction the labelled material is separated by chromatographic methods. Conventionally, this is done by multidirectional thin layer chromatography on ion exchange polyethylene imide cellulose plates that yield patterns of spots or areas of radioactivity upon autoradiography (Randerath et al. 1981, Phillips 1989). The quantitation is achieved by Cerencov counting of the excised spots or more conveniently with a phospho-imager or similar apparatus. Alternatively, reversed-phase HPLC methods have been developed that allow on-line detection and quantitation of DNA adducts with improved chromatographic resolution of labelled adducts (Pfau and Phillips 1991, Zeisig and Möller 1995). Some problems exist with the interlaboratory reproducibility of these ³²P-postlabelling DNA adduct analyses. While in several trials the qualitative reproducibility was satisfactory, the quantitative results differed considerably between laboratories. Efforts to standardize the existing protocols are under way (Phillips and Castegnaro 1993). The high sensitivity of the ³²P-postlabelling assay is also its weakness. Many

different spots or diffuse areas of radioactivity are observed in this assay but the structure of these and the biological consequences remain unknown. To date it has been impossible to identify most of the ³²P-labelled adducts since none of the spectroscopic methods available reaches into these femtomole levels of sensitivity.

Correlation of DNA

147

Species

Experimental studies have established differences of hepatic DNA adduct formation, e.g. between two species of salmonid fish, rainbow trout and coho salmon, upon treatment with aflatoxin B1 (Nakatsuru et al. 1990). The studies published so far on DNA adducts in feral fish have been pilot studies with the aim of establishing the suitability of this biomarker in a number of different species (Tables 3 and 4).

Fish species with a small migration tendency and a high abundance in the investigated aquatic environment are considered most suitable (Jedamski-Grymlas et al. 1994). It has been suggested that benthic species living close to the sediment and feeding on the sediment or invertebrates living therein are ideal for monitoring the contamination of the sediment. A correlation between adduct

<u>W. Pfau</u>

Species		Location		Method ^a	Adduct levels ^b RAL (10 ⁸)	Correlation of DNA adduct levels with contamination ^c	Reference
English sole	Parophrys vetulus	Duwamish Waterway	Seattle, Washington	Butex	2.6	+	Varanasi <i>et al</i> . 1989b
		Eagle Harbor			1.7		
		(Useless Bay)d			(< 0.03) ^d		
Winter flounder	Pseudopleuronectes americanus	Boston Harbor	Boston, MA	Butex	0.9	+	Varanasi et al. 1989b
Mugil	Mugil auratus	Mediterranean	Croatian coast	P1/Butex	0.9	_	Kurelec et al. 1989b
English sole	Parophrys vetulus	North Sea and Irish Sea			_	+	Poginsky et al. 1990
Dab	Limanda limanda						
Winter flounder	Pseudopleuronectes	Long Island Sound	Norwalk, New Haven	_	_	+	Gronlund et al. 1991
	americanus		Niantic, Connecticut				
English sole	Parophrys vetulus	Pudget Sound:	Seattle, Washington		14–18	+	Stein et al. 1992
Rock sole	Lepidopsetta bilineata	Duwamish waterway					
Starry flounder	Platichthys stellatus	(Polnell point) ^d			(2.0-6.7) ^d		
Dab	Limanda limanda	North Sea	Several stations in the	Butex	No adducts	_	Chipman et al. 1992
			German Bight				
Dab	Limanda limanda	North Sea	Several stations in the	P1	0.1-8.4	+	Poginsky et al. 1990
			German Bight				
Red mullet	Mullus barbatus	Mediterranean	Several sites: Spanish,	P1/Butex	Up to 5	+	Pfohl-Leszkowicz et al.
			French, Italian Coast	ELISA (PAH)			1996
Hardhead sea catfish	Arius felis	Gulf of Mexico	Galveston, Texas		_	-	McDonald et al. 1996

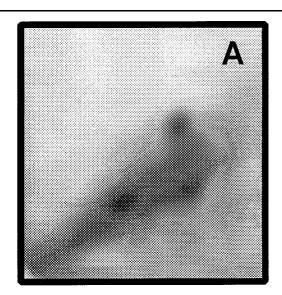
Table 4. Field studies on DNA adducts in marine fish. Hepatic DNA adduct levels were determined using variations of the ³²P-postlabelling assay or immunochemical analysis (ELISA) employing antibodies generated against DNA adducts of benzo[a]pyrene diol epoxide. See legend to Table 3.

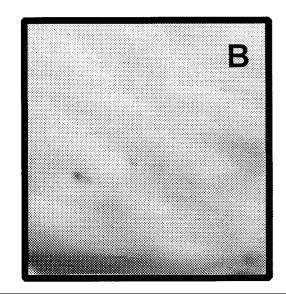
Tormation in fish liver DNA and sedimental contamination has been shown for goadfish (Collier et al. 1993) and eel (van der Oost et al. 1994b). Aromatic contaminants of high molecular weight tend to bind to the sediment and DNA postlabelling analysis of liver DNA. However, studies of rainbow trout exposed to industrial effluents have shown that they develop DNA adducts both in the liver and to a considerable extent in the gill (Sagelsdorff 1995). The variation of DNA adduct levels depending on the route of administration (feed, water or intraperitoneal injection) has also been shown in experimental studies (Varanasi et al. 1986, Potter et al. 1994).

Endogenous adducts

In order to obtain meaningful results with any biomarker the selection of an appropriate reference site is crucial. While aguarium-raised fish appear to be ideal with respect to minimized pollution, the financial effort is high and the artificial situation may be misleading. Chemical analysis of the water and/or sediment from the reference site would be required but in a number of studies DNA adduct levels in fish liver DNA have been reported and assessed against another biomarker. It has been pointed out that ³²P-postlabelling analysis may detect considerable levels of DNA adducts unrelated to anthropogenic water pollution (Kurelec et al. 1989a, Ray et al. 1995). The nature of these adducts is not clear and they might be due to natural genotoxic components in the diet or be of endogenous origin. Endogenously-formed DNA modifications have also been detected in laboratory mammals (Randerath et al. 1986, Nath et al. 1996) and are apparently dependent on diet, age and, in the case of wildliving fish, are season dependent. Although described for a number of fish species as being considerable the levels reported by Kurelec et al. (1989b) are relatively low compared with other studies (Table 4). Furthermore, in this study of DNA adduct formation in the Mediterranean sea, the contamination status of the polluted site was not based on chemical analyses.

However, fish from polluted and reference sites should be matched for species,


gender, age and caught at the same time of the year. Determination of age should be done by scale analysis since size or body weight of animals may be reduced in heavily polluted areas.


The age of the animals appears to be of crucial importance: in experimental studies Varanasi *et al.* (1989) showed that in juvenile English sole higher adduct levels were induced compared with adult animals. The accumulation of adducts has been mentioned above, thus animals living in a contaminated environment for years show higher levels of covalent DNA modification.

Identification of DNA adducts

Whereas in laboratory experiments the exposure to a defined chemical leads to a typical pattern of covalent modification the exposure of wild animals typically occurs to complex mixtures. The ³²P-postlabelling analysis is especially suited for the high number of DNA adducts resulting from these exposures, resulting in a typical diagonal zone of radioactivity upon ion-exchange TLC analysis (Figure 1). Even with a few discrete adduct spots detectable, only a small amount of information can be gained with regard to the chemical structure of the adducts measured. Applying different variations of the assay employing a nuclease P1 hydrolysis (Reddy and Randerath 1986) or enrichment of hydrophobic adducts prior to the labelling (butanol extraction (Gupta 1985, Gupta and Earley 1988) or chromatographic techniques (Dunn et al. 1987) give some information about the nature of adducts. The nuclease P1 enrichment procedure is generally considered to enhance DNA adducts derived from polycyclic aromatic hydrocarbons or their activated metabolites, the diol epoxides, especially in the case of benzo[a]pyrcma thamada

DNA adducts in fish 149

Figure 1. Typical autoradiographic representations of a ³²P-postlabelling analysis using multidirectional ion-exchange chromatography of DNA from the liver of a bream from the river Elbe (A) and a reference lake (B, Belauer See). Experimental details are described elsewhere (Pfau *et al.* 1994).

of this class of chemical carcinogens. However, DNA adducts derived from other classes of genotoxic chemicals such as unsaturated aldehydes, quinoid structures, polyhalogenated or heterocyclic compounds from both natural and industrial origin have been shown to be easily detectable by this enrichment procedure (Reddy and Randerath 1986, Gupta and Early 1988, Reddy et al. 1990).

Recent developments using high resolution chromatographic techniques (Pfau and Phillips 1991, Zeisig and Möller 1995) will improve the accuracy of identification of DNA adducts from field studies by means of chromatographic comparison with synthetic standard adducts. Using low resolution ion-exchange chromatography, adducts detected in fish liver DNA have been assigned to the major adduct formed by benzo[a]pyrene diol epoxide (van Schooten et al. 1995, Pfohl-Leszkowicz et al. 1996).

The development of dedicated protocols for mass spectrometric analysis of DNA adducts at a very high sensitivity will further this field in the near future. It will thus be possible to measure individual adducts and to identify adducts detected in feral fish, thus allowing retrospective characterization of the contaminant and possibly the polluter responsible.

Conclusions

It has been shown both in the laboratory and in field studies that the analysis of DNA adducts is a promising marker of exposure of fish to certain genotoxic pollutants and complex mixtures. With the exception of a few studies, there has generally been a correlation between pollution status and DNA adduct levels in both freshwater and marine fish. Adduct levels observed in hepatic DNA from fish caught in polluted rivers were higher (up to 56.6 adducts per 108 nucleotides) than those from marine fish (up to 18 adducts per 10⁸ nucleotides). Compared with the determination of neoplasia in fish the earlier endpoints of DNA damage appear to be far more sensitive both in terms of progression of the disease and of contamination levels. Other endpoints of genotoxicity have been put forward, such as the determination of micronuclei or DNA strand breaks (Shugart et al. 1992). The latter has been shown to be confounded by factors such as water oxygen levels (Liepelt et al. 1995). Furthermore, these biomarkers of genotoxic effect lack the information about the contaminant that is obtained with DNA adduct studies. With the application of sophisticated methodology DNA adduct determination in feral fish serves as a biomarker of both exposure to genotoxicants and a marker of a very early genotoxic effect in the environment.

References

Autrup, H. (1991) Human exposure to genotoxic carcinogens: methods and their limitations. *Journal of Cancer and Clinical Oncology*, **117**, 6–12. Bohr, V. A. (1995) DNA repair fine structure and its relations to genomic instability. *Carcinogenesis*, **16**, 2885–2892.

CHIPMAN, J. K., MARSH, J. W., LIVINGSTONE, D. R. AND EVANS, B. (1992). Genetic toxicology in dab Limanda limanda from the North sea. Marine Ecology Progress Series, 91, 121–126.

COLLIER, T. K., STEIN, J. E., GOKSOYR, A., MYERS, M. S., GOOCH, J. W., HUGGETT, R. J. AND VARANASI, U. (1993) Biomarkers of PAH exposure in oyster toadfish (*Opsanus tau*) from the Elizabeth River, Virginia. *Environmental Sciences*, **2**, 161–177.

COLLIER, T. K., ANULACION, B. F., STEIN, J. E., GOKSOYR, A. AND VARANASI, U. (1995)
A field evaluation of cytochrome P4501A as a biomarker of contaminant exposure in three species of flatfish. *Environmental Toxicology and Chemistry*, **14**, 143–152.

DERAAT, W. K., VINK, G. J. AND HANSTVEIT, A. O. (1990) The significance of mutagenicity as criterion in ecotoxicological evaluations. In *Genetic Toxicology of Complex Mixtures*, D. Waters, ed. (Plenum, New York), pp. 249–269.

DUNN, B. P., BLACK, J. J. AND MACCUBBIN, A. (1987) ³²P-Postlabeling analysis of aromatic DNA adducts in fish from polluted areas. *Cancer Research*, **47**, 6543–6548.

Dunn, B. P., Fitzsimmons, J., Stalling, D., MacCubin, A. E. and Black, J. J. (1990) Pollution related aromatic DNA adducts in liver from populations of wild fish. *Proceedings of the American Association for Cancer Research*, **31**, 570.

EL ADLOUNI, C., TREMBLAY, J., WALSH, P., LAGEUX, J., BUREAU, J., LALIBERTE, D., KEITH, G., NADEAU, D. AND POIRIER, G.G. (1995) Comparative study of DNA

- adduct levels in white sucker fish (Catostomus commersoni) from the basin of the St. Lawrence river (Canada). Molecular and Cellular Biochemistry, **148**, 133–138.
- FRIESEN, M. D., CUMMINGS, D. A., GARREN, L., BUTLER, R., BARTSCH, H. AND SCHUT, H. A. J. (1996) Validation in rats of two biomarkers of exposure to the foodborne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP): PhIP-DNA adducts and urinary PhIP. Carcinogenesis, 17, 67-72.
- GOKSOYR, A. AND FÖRLIN, L. (1992) The cytochrome P450 in fish, aquatic toxicology and environmental monitoring. Aquatic Toxicology, 22,
- GRONLUND, W. D., STEIN, J. E., CHAN, S.-L., BROWN, D. W., McCain, B. B. AND LANDAHL, J. T. (1991) Multidisciplinary assessment of pollution at three sites in Long Island Sound (USA). Estuaries, 14, 299-305.
- GUPTA, R. C. (1985) Enhanced sensitivity of ³²P-postlabeling analysis of aromatic carcinogen DNA adducts. Cancer Research, 45, 5656-5662.
- GUPTA, R. C. AND EARLEY, K. (1988) 32P-adduct assay: comparative recoveries of structurally diverse DNA adducts in the various enhancement

- OPPORT

 OF STREET, N. (1986) **P-adduct assay: comparative recoveries of structurally diverse DNA adducts in the various enhancement procedures. *Carcinogenesis*, 9, 1687–1693.*

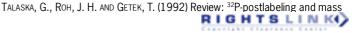
 JAMES, M. O., SCHELL, J. D., BOYLE, S. M., ALTMAN, A. H. AND CROMER, E. A. (1991) Southern flounder hepatic and intestinal metabolism and DNA binding of benzo[a]pyrene metabolites. *Chemico-Biological Interactions*, 79, 305–322.*

 JEDAMSKI-GRYMLAS, J., KAMMANN, U., TEMPELMANN, A., KARBE, L. AND SIEBERS, D. (1995) Biochemical responses and environmental contaminants in breams (*Abramis brama* L.) caught in the river Elbe. *Ecotoxicology and Environmental Safety, 31, 49–56.*

 KRIEK, E., De ENGELSE, L., SCHERER, E. AND WESTRA, J. G. (1984) Formation of DNA modifications by chemical carcinogens. *Biochemica et Biophysica Acta, 738, 181–201.*

 KURELEC, B., GARG, A., KRCA, S., CHACKO, M. AND GUPTA, R. C. (1989a) Natural environment surpasses polluted environment in inducing DNA damage in fish. *Carcinogenesis*, 10, 1337–1339.*

 WILLELEC, B., GARG, A., KRCA, S. AND GUPTA, R. C. (1989b) DNA adducts as biomarkers in genotoxic risk assessment in aquatic environment. *Marine Environmental Research, 28, 317–321.*


 WILLELC, B., GARG, A., KRCA, S., BRITVIC, S., LUCIC, D. AND GUPTA, R. C. (1992) DNA adducts in carp exposed to artificial diesel-2 oil slicks. *European Journal of Pharmacology, Environmental Toxicology and Pharmacology, 1, 51–56.*

 LIEPELT, A., KARBE, L. AND WESTENDORF, J. (1995) Induction of DNA strandbreaks in rainbow trout *Oncorhynchus mykiss* under hypoxic and hyperoxic conditions. *Aquatic Toxicology, 33, 177–181.*

 MCDONALD, S., WILLETT, K. L., SAFE, S. H., BEATTY, K. B., STEIBERG, M., MAYOR, P. AND KENNICUTT, N. C. (1996) Validation of bioassays for assessing the contamination of marine environments. *Polycyclic Aromatic Compounds, 11, 57–66.*

 MALINS, D. C., MCCAIN, B. B., LANDAHL, J. T., MYERS, M. S., KRAHN, M. M., BRAUN, D. W., CHAN, S. L. AND ROUBAL, W. T. (1988) Neoplastic and other diseases in fish in relation to toxic che
 - W., CHAN, S. L. AND ROUBAL, W. T. (1988) Neoplastic and other diseases in fish in relation to toxic chemicals: an overview. Aquatic Toxicology, 11, 43–67.
 - Mix, M. S. (1986) Cancerous diseases in aquatic animals and the association with environmental pollutants. Marine Environmental Research, 20, 1–141.
 - Nakatsuru, Y., Qin, X., Masahito, P. and Ishikawa, T. (1990) Immunological detection of in vivo aflatoxin B1-DNA adduct formation in rats, rainbow trout and coho salmon. Carcinogenesis, 11, 1523-1526.
 - Nath, R. G., Randerath, K., Li, D. and Chung, F.-L. (1996) Endogenous production of DNA adducts. Regulatory Toxicology and Pharmacology, 23, 22-28.
 - NISHIMOTO, M., YANAGIDA, G. K., STEIN, J. E., BAIRD, W. M. AND VARANASI, U. (1992) The metabolism of benzo[a]pyrene by English sole (Parophrys vetulus): comparison between isolated hepatocytes in vitro and liver in vivo. Xenobiotica, 22, 949-961.
 - PFAU, W. AND PHILLIPS, D. H. (1991) Improved reversed-phase high-performance liquid chromatographic separation of ³²P-labelled nucleoside 3',5'bisphosphate adducts of polycyclic aromatic hydrocarbons. Journal of Chromatography, **570**, 65–76.
 - PFAU, W., JEDAMSKI, J., SÖHREN, K.-D., WESTENDORF, J., MARQUARDT, H. AND KARBE, L. (1994) DNA adducts in liver of bream (Abramis brama) of the River Elbe.

- In Berichte des Zentrums für Meeres- und Klimaforschung, Reihe E, Vol. 7, L. Karbe, K. Mädler and J. Westendorf, eds (Hamburg University) pp. 75-79.
- PFOHL-LESZKOWICZ, A., BURGEOT, T., RAOUX, C. AND SANTELLA, R. M (1996) DNA adducts in the red mullet: a potential bioindicator of pollutant in the Mediterranean sea. Polycyclic Aromatic Compounds (in press).
- PHILLIPS, D. H. (1989) Modern methods of DNA adduct determination. In Handbook of Experimental Pharmacology, Vol. 94/1, C. S. Cooper and P. L. Grover, eds (Springer-Verlag, Berlin) pp. 471–502.
- PHILLIPS, D. H. AND CASTEGNARO, M. (1993) Results of an interlaboratory trial of ³²P-postlabeling. In Postlabelling Methods for Detection of DNA Adducts, D.H. Phillips, M. Castegnaro and H. Bartsch, eds (International Agency for Research on Cancer, Lyon) pp. 35-49.
- POGINSKY, B., BLÖMEKE, B., HEWER, A., PHILLIPS, D. H., KARBE, L. AND MARQUARDT, H. (1990) 32P-postlabeling analysis of hepatic DNA of benthic fish from European waters. Proceedings of the American Association of Cancer Research, 31, 568.
- POIRIER, M. C. (1993) Antisera specific for carcinogen-DNA adducts and carcinogen modified DNA: applications for detection of xenobiotics in biological samples. Mutation Research, 288, 31-38.
- POTTER, D., CLARIUS, T. M., WRIGHT, A. S. AND WATSON, W. P. (1994) Molecular dosimetry of DNA adducts in rainbow trout (Oncorhynchus mykiss) exposed to benzo[a]pyrene by different routes. Archives of Toxicology, 69, 1-7.
- RANDERATH, K., REDDY, M. V. AND GUPTA, R. C. (1981) 32P-Labeling test for DNA damage. Proceedings of the National Academy of Sciences of the USA, 78, 6126-6129.
- RANDERATH, K., REDDY, M. V. AND DISHER, R. M. (1986) Age- and time-related DNA modifications in untreated rats: detection by 32P-postlabeling assay and possible significance for spontaneous tumor induction and aging. Carcinogenesis, **7**, 1615–1617.
- RAY, S., BIEGER, T. AND SCROUTON, D. R. (1995) 32P-Postlabeling analysis of aromatic DNA-adducts in liver and brain of wild brook trout (Salvelinus fontinalis) Chemosphere, 30, 773-778.
- REDDY, M. V. AND RANDERATH, K. (1986) Nuclease P1-mediated enhancement of sensitivity of ³²P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis. 7. 1543-1551.
- REDDY, M. V., BLEICHER, W. T., BLACKBURN, G. R. AND MACKERER, C. R. (1990) DNA adduction by phenol, hydroguinone, or benzoguinone in vitro but not in vivo. Carcinogenesis, 11, 1349–1357.
- SAGELSDORFF, P. (1995) Methods for the determination of reactive compounds. In Toxicology of Industrial Compounds, H. Thomas, R. Hess and F. Waechter, eds (Taylor & Francis, London), pp. 73-89.
- SHUGART, L. R., McCarthy, J. F., Jiminez, B. D. and Daniel, J. (1987) Analysis of adduct formation in the bluegill sunfish (Lepomis macrochirus) between benzo[a]pyrene and DNA of the liver and hemoglobin of the erythrocyte. Aquatic Toxicology, 9, 319–327.
- SHUGART, L. R., BICKHAM, J., JACKIM, G., McMAHON, G., RIDLEY, W., STEIN, J. AND STEINERT, S. (1992) DNA alterations. In Biomarkers, R. J. Hugget, R. A. Kimerle, P. M. Mehrle and B. L. Bergman, eds (Lewis Publishers, Boca Raton) pp. 125-153.
- SIKKA, H. C., RUTKOWSKI, J. P., KANDASWAMI, C., KUMAR, S., EARLEY, K. AND GUPTA, R. C. (1990) Formation and persistence of DNA adducts in the liver of brown bullheads exposed to benzo(a)pyrene. Cancer Letters, 49, 81-87.
- SIKKA, H. C., STEWARD, A. R., KANDASWAMI, C., RUTKOWSKI, J. P., ZALESKI, J., EARLEY, K. AND GUPTA, R. C. (1991) Metabolism of benzo[a]pyrene and persistence of DNA adducts in the brown bullhead (Ictalurus nebulosus). Comparative Biochemistry and Physiology, 100, 25–28.
- Stegeman, J. J. (1993) Cytochrome P450 forms in fish. In Handbook of Experimental Pharmacology, Vol. 105, G. V. R. Born, P. Cuatrecasas and H. Herken, eds (Springer, Heidelberg) pp. 279-291.
- Stein, J. E., Collier, T. K., Reichert, W. L., Casillas, E., Hom, T. and Varanasi, U. (1992) Biondicators of contaminant exposure and sublethal effects: studies with benthic fish in Puget Sound, Washington. Environmental Toxicology and Chemistry, 11, 701–714.
- STEIN, J. E., REICHERT, W. L., FRENCH, B. AND VARANASI, U. (1993) 32P-postlabeling analysis of DNA adduct formation and persistence in English sole (Pleuronectes vetulus) exposed to benzo[a]pyrene and 7Hdibenzo[c,g]carbazole. Chemico-Biological Interactions, **88**, 55–69.

DNA adducts in fish 151

spectrometric methods for analysis of bulky, polyaromatic carcinogen-DNA adducts in humans. Journal of Chromatography, 580, 293–323.

- VAN DER OOST, R., VAN ASTEL, L., WORST, D., HANRAADS, M., SATUMALAY, K., VAN SCHOOTEN, F., HEDIA, H. AND VERMEULEN, P. E. (1994a) Biochemical markers in feral roach (Rutilus rutilus) in relation to the bioaccumulation of organic trace pollutants. Chemosphere, 29, 801-817.
- VAN DER OOST, R., VAN SCHOOTEN, F. J., ARIESE, F. AND HEIDA, H. (1994b) Bioaccumulation, biotransformation and DNA binding of PAHs in feral eel (Anguilla anguilla) exposed to polluted sediments. Environmental Toxicology and Chemistry, **13**, 859–870.
- VAN SCHOOTEN, F. J., MAAS, L. M., MOONEN, E. J. C. AND VAN DER OOST, R. (1995) DNA adduct dosimetry in biological indicator species living on PAHcontaminated soils and sediments. Ecotoxicology and Environmental Safety, 30, 171-179.
- VARANASI, U., NISHIMOTO, M., REICHERT, W. L. AND EBERHART, B. (1986) Comparative metabolism of benzo[a]pyrene and covalent binding to hepatic DNA in English sole, starry flounder and rat. Cancer Research, 46, 3817-3824.
- VARANASI, U., REICHERT, W. L., EBERHART, B.-T. L. AND STEIN, J. E. (1989a) Formation and persistence of benzo(a)pyrene-diolepoxide–DNA adducts in liver of English sole (Parophrys vetulus). Chemico-Biological Interactions. **69**, 203-216.

- VARANASI, U., REICHERT, W. L. AND STEIN, J. E. (1989b) 32P-Postlabelling analysis of DNA adducts in liver of wild English sole (Parophrys vetulus) and winter flounder (Pseudopleuronectes americanus). Cancer Research, 49,
- WANG, R. AND O'LAUGHLIN, J. W. (1992) Determination of DNA-benzo[a]pyrene adducts by HPLC with laser induced fluorescence detection. Environmental Science and Technology, 26, 2294–2297.
- WILLET, K., STEINBERG, M., THOMSEN, J., NARASIMHAM, T. R., SAFE, S., McDonald, S., BEATTY, K. AND KENNICUT, M. C. (1995) Exposure of killifish to benzo[a]pyrene: comparative metabolism, DNA adduct formation and aryl hydrocarbon (Ah) receptor agonist activities. Comparative Biochemical Physiology, **B112**, 93–103.
- ZEISIG, M. AND MOLLER, L. (1995) 32P-HPLC suitable for characterization of DNA adducts formed in vitro by polycyclic aromatic hydrocarbons and derivatives. Carcinogenesis, 16, 1-9.
- ZHANG, Q., SUORSA-SUPER, K. AND CURTIS, L.R. (1992) Temperature-modulated aflatoxin B1 hepatic disposition and formation and persistence of DNA adducts in rainbow trout. Toxicology and Applied Pharmacology, 113, 253-259.

Received 16 September 1996, revised form accepted 14 December 1996

